
  

 

Abstract— In this paper we propose a robust curb detection 

method which is based on the fusion between semantically 

labeled camera images and a 3D point cloud coming from LiDAR 

sensors. The labels from the semantically enhanced cloud are 

used to reduce the curbs’ searching area. Several spatial cues are 

next computed on each candidate curb region. Based on these 

features, a candidate curb region is either rejected or refined for 

obtaining a precise positioning of the curb points found inside it. 

A novel local model-based outlier removal algorithm is proposed 

to filter out the erroneous curb points. Finally, a temporal 

integration of the detected curb points in multiple consecutive 

frames is used to densify the detection result. An objective 

evaluation of the proposed solution is done using a high-

resolution digital map containing ground truth curb points. The 

proposed system has proved capable of detecting curbs of any 

heights (from 3cm up to 30cm) in complex urban road scenarios 

(straight roads, curved roads, intersections with traffic isles and 

roundabouts). 
 

I. INTRODUCTION 

Curbs are the most common road delimiters in urban 
environments. Their precise detection is an important 
requirement in any Advanced Driver Assistance Systems 
(ADAS) and Autonomous Driving Systems for many tasks. 
They are a crucial early step for detecting the navigable road 
area, for trajectory planning, vehicle localization, or parking. 

It has been over a decade since the detection of urban curbs 
was first studied. Throughout time, dedicated methods based 
on the type of sensors used for the detection were proposed. 
Monocular cameras were the first sensors used for the curb 
detection task, followed by stereo cameras, radars and 
LiDARs.  

However, each sensor has its advantages and limitations. 
Monocular cameras for example offer RGB information, but 
they are sensitive to illumination variations and lack spatiality. 
A LiDAR sensor, on the other hand, provides accurate depth 
measurements for its surrounding environment, being 
independent on the illumination variations, but does not have 
color information and offers sparse data. In order to 
compensate sensors’ limitations, the recent researches are 
focusing on multi-sensor approaches. The most popular 
combination of all are the LiDARs and camera systems. 

The curb extraction for a LiDAR sensor usually implies 
sweeping each LiDAR row in the search of a region of points 
which capture the most common curb geometric structure, a 
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step. However, many false positives are present. Small curbs 
are hard to detect in these systems because of the lack of an a 
priori information which should provide context.  

Semantic segmentation on color camera images is a multi-
classification problem, which implies assigning an object class 
to each pixel of an image. Semantic segmentation using 
Convolutional Neural Networks (CNNs) applied on a vehicle’s 
monocular color camera images has become a very popular and 
useful task. The recent optimizations made in the networks 
design have ensured their run in real time. A first limitation is 
the expensive annotation required in order to have a large 
dataset for training. Recently, automatic annotation systems are 
more and more researched in order to overcome this issue. The 
second limitation is the lack of a precise spatial positioning of 
the surrounding objects. Thirdly, the semantic segmentation is 
memoryless. This means semantic classes of pixels may vary 
drastically between consecutive frames although the 
environment did not change much. Also, in order to keep the 
semantic segmentation running in real time, a perfect 
classification of each pixel will never be possible and 
erroneous segmentation will always be present. 

This paper, tries to solve the limitations stated earlier by 
using a multi-sensor fusion approach. The main idea of the 
proposed method lies in the fusion between the semantic 
labeled camera images with the LiDAR point cloud. In this 
way, the 3D point cloud processing for the detection of urban 
curbs will benefit from a search space reduction and an access 
to the context information.  

Curbs are static elements of the urban environment, which 
persist in consecutive frames. As a geometrical shape, they are 
best described using line segments. Following these 
observations and the work in [1], we propose an improved and 
novel curb detection method that is capable of detecting curbs 
of any heights and geometrical shapes in complex urban road 
scenarios. The main contributions of the proposed system refer 
to: 

 Improved spatial cues computation and filtering module 
for the detection of curbs – capable of detecting small 
curbs (as low as 3cm), regular curbs (≈10-15cm), and 
large curbs (≈25-30cm) with a high precision rate  

 A novel outlier removal algorithm – which is based on 
a local model approach developed by considering both 
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density and spatial proximity. This increases in the end 
the robustness and precision of the results. 

 A temporal integration module – which tackles the 
sparsity of the detected curb points from a single frame. 

 An objective evaluation of the entire proposed solution, 
done by using a high resolution digital map which 
contains ground truth curb points 

Along with the added improvements, the algorithm remains 
independent of the shape of the urban road, detecting curbs 
with high precision in many road scenarios: straight road, 
curved road, fork roads and complex intersections.  

The research was done in the framework of the UP-Drive 
H2020 project having as goal the design of an automated 
vehicle. The sensory architecture of the systems includes five 
360 degrees with 16/32 layers LiDARs, and four fish eye area-
view cameras. The calibration and cross-calibration of the 
sensors, the motion correction of LiDARs points and the 
LiDAR to camera data fusion are presented in [2]. The 
software architecture include a semantic segmentation module 
of the fish eye camera color images [3]. The curb detection 
module is developed in this context.  

The paper is classically structured as follows: First, the 
state of the art for curb detection is presented in Section II. 
Then, in Section III, the pipeline of the new curb detection 
algorithm along with the detailed description of each stage in 
subsections are presented. In Section IV, the evaluation method 
is presented followed by the experiment results from Section 
V.  Finally, we close with the conclusions and possible further 
improvement in section VI. 

II. RELATED WORK 

Curb detection has been a subject of major study in 
autonomous driving applications throughout time. 

The most popular sensors used nowadays for curb detection 
are 2D/3D LiDAR sensors [4-6],[9-11],[14],[16] mostly 
because of their high accuracy measurements and because they 
are independent on lighting conditions. 

Authors in [5],[7],[12] use the representation of a grid map 
in order to detect the curb cells. Because of the sparse 
measurements, detecting a curb step inside a grid map is harder 
to achieve and does not offer a precise spatial positioning of 
curb points. 

An advantage 3D LiDAR sensors have when it comes to 
curb detection, is that each 360 degrees’ laser beam spin 

accumulates ordered set of points. This property is the most 
exploited in literature [4], [9], [13], [14], [16] and has proved 
to give the best results when it comes to precise curb detection 
methods.  Authors use various spatial cues in the search of the 
curb step model on each laser beam spin: elevation difference 
(as in [4], [9], [14]), normal vector [16], angle [4]. 

Using a 3D LiDAR as a standalone sensor for curb 
detection has disadvantages. Authors in [4] noticed that using 
only a LiDAR sensor, the system it is not capable to provide 
enough context information for the detection of curbs. In the 
search of context, authors in [9] and [11] assume curbs are 
usually the nearest small size obstacle from the vehicle. They 
build a radial grid and keep the nearest candidate curb point to 
the car as being curb points.  However, vehicle wheel tires 
which have similar aspect to that of a curb might be detected 
as false positives using this constraint.  

Authors in [9] also propose the usage of Smooth Arc 
Length Feature which assumes that curbstones are sepparate 
two smooth surfaces. However, using this constraint the curbs 
between road side and vegetation will not be considered 
correctly.   

In [14], the authors start from the assumption that urban 
curbs are on the left and right of the autonomous vehicle. The 
data is thus split in two sets one from the right and the other 
from left. Although this assumption holds in many urban road 
cases, the system will fail to detect more complex curb 
scenarios when traffic isles and roundabouts are present. 

A viable solution for receiving context is fusing the 3D 
LiDAR sensor with a monocular camera sensor. In [10] authors 
combine LiDAR depth images with raw camera RGB images 
in order to detect curbs. A fusion between semantic labeled 
camera images and LiDAR’s point cloud is proposed in [1]. 
The context provided by the semantic labels to the 3D points 
successfully reduces the search for the curb points and ensures 
the detection of curbs in complex road scenes. However, the 
curb detection system in [1] estimates the curb points 
independently and does not take into account the entire model 
of the curbstone segment. Outliers are thus present and not 
filtered out. 

When comparing the curb detection methods using a 3D 
LiDAR sensor with other used sensors (eg. stereos), the density 
of the final curb points from a frame is not high.  

Authors in [17], [18] detected curbs using a stereo sensor. 
Although the density of stereo is known to be high, both 

 
Figure 1. The pipeline of the proposed method. 

 

 



  

authors propose to enrich the curb data points making use of 
the curbs’ static property.  

The work of [18] uses a temporal integration of frames in 
order to enrich the curb points from the current frame. On the 
enriched data points, a cubic spline model is fitted onto the curb 
data. Authors in [17] also integrate curb points from multiple 
frames using a conditional random field (CRF) method. A 3rd 
order polynomial is fitted onto the curb points in the end and a 
prediction system is built using a Kalman filter. 

Authors in [15] used the temporal integration idea for 
enriching curb points detected by a LiDAR sensor. They used 
the dense detected curb points in order to correct the GPS 
location errors of the intelligent vehicle.  

Regardless of the used sensor for curb detection, the 
modeling of curb points is similar for all methods found in 
literature. This modeling is usually done for the detection of 
outliers (as in [9] and [11]), or for the curb reconstruction ([18], 
[17]). The used models can be of two types: parametric (linear 
models [9], quadratic polynomials [11], 3rd order polynomials 
[17], NURBS [8], splines [18]) and non-parametric (free-form 
[4], [15]). 

 The authors in [11], [17] use a high order polynomial for 
curb fitting. Curbs from traffic isles and roundabouts remain 
hard to detect. The usage of splines [18] might provide a better 
representation but it is unfortunately sensitive to erroneous 
curb points. To address the problem of complex urban 
scenarios, the usage of a non-parametric model remains the 
most promising solution for now. 

III. PROPOSED SOLUTION 

In this section we present the stages of the proposed 
solution. The pipeline of the system can be seen in  
figure 1. The proposed algorithm for the detection of urban 
curbs is based on a top down approach and lies in five stages: 

A. Semantic information association to the 3D point 

cloud – where the low level fusion between LiDAR 

data and semantic images is performed.  

B. ROIs extraction and refinement – in which curb ROIs 

are detected based on the semantic labels of the 

points on each LiDAR scanning line. Each ROI is 

expanded in order to increase the chance of enclosing 

inside it a curb’s step. 

C. ROI filtering using spatial cues – in which the ROI 

boundaries are shrink in order to match the candidate 

curb edge points.  

D. Outliers removal – where the candidate curb points 

which best describe a real curbs’ shape are identified.  

E. Temporal integration of curb points – where the curb 

object persistency property is used in order to densify 

the detected curb points.  

A non-parametric curb model is obtained in the end in the 

form of a list of 3D points. The lowest curb point is stored in 

the list for each detected curb.   

A. Semantic information association to the 3D point cloud 

In order to obtain the semantically labeled images from the 
vehicle’s monocular color cameras we used the semantic 
segmentation solution developed in the framework of the  

UP-Drive project [3]. The set of considered classes was 
extended with the curb class by improving the annotation of the 
training set and retraining the segmentation system. 

 
When the segmented images are available in the system, 

along with an entire LiDAR 360 degrees’ sweep, a fusion 
between the two is done by projecting each LiDAR point onto 
the images. The semantic label of a pixel is associated to the 
corresponding 3D point which falls onto it (see [2]). 

After obtaining the semantically enhanced 3D cloud (figure 
2), we filter the points based on their semantic classes. We 
separate the points classified in the ground category 
(vegetation, road, curb, lane marking, terrain and sidewalk) 
from the other points (the remaining classes). Only the 3D 
points from the ground category classes are next processed. 

 

B. Curb ROIs extraction and refinement 

We start with the assumption that the point cloud coming 
from a LiDAR sensor is in an ordered sequence. A curb Region 
of Interest (ROI) is a chunk of consecutive 3D points extracted 
from a scanning line of the LiDAR sensor. A scanning line can 
contain more than one ROIs.  

In order to extract a ROI, we will make use of the semantic 
classes. On each row we search for a succession of points with 
semantical classes which best describe the presence of a curb. 
The best guess is taking the region of consecutive points, 
labeled as curb class. The second option is to extract the small 
region where a transition between the terrain, vegetation or 
sidewalk class and the road class is present.  

Because we want to make sure a ROI encapsulates the 
entire curb structure (i.e. the curb step), a further refinement is 
needed. For this, the ends of the previously obtained ROIs are 
dilated in both directions with predefined distances: 𝜆1 for the 
chunk containing curb labeled points and 𝜆2 for the chunk 
marking a transition between terrain, vegetation or sidewalk 
and road. 𝜆1 is smaller than   𝜆2.  

 

C. ROI filtering using spatial cues 

The idea is to shrink each ROI, such that it fits as much as 
possible on a curb’s structure: one end of the ROI will be the 

 
 

Figure 2. The point cloud with semantic information associated to it. 



  

lowest curb edge (the point neighboring the road side region), 
while the other, the highest curb edge point (the point 
neighboring the sidewalk/vegetation/terrain region).  

A curb’s shape inside a ROI is an ascending height step 
between the road region and the vegetation or sidewalk region. 
We start by assuming all ROIs contain such a structure and we 
try to find in each ROI the monotonically ascending regions of 
points starting from road side to the adjacent road area. 
Because the standard step shape of an urban curb is the same 
for all curb types (i.e. small curbs, regular curbs, large curbs), 
we normalize the heights of the points inside the ROI. This 
allows the detection of curbs of any heights (from 3cm up to 
30cm). First order derivative (FOD) is next computed on the 
normalized heights from the road side to the adjacent road side 
in order to detect the monotonically ascending regions. A 
smoothing filter is applied two times on the FOD for 
eliminating any unwanted spikes. Usually, the point with 
maximum slope (𝑝𝑒𝑎𝑘𝑃𝑜𝑖𝑛𝑡) of the curb is found in on the 
maximum value of the FOD (see figure 3).  

The first spatial filter is applied using the FOD:  

1. Normalized height variation feature (𝑣ℎ) - the 
variation on the normalized height (on the Z axis in 
the xOyOzO coordinate system) of the n points found 
inside a ROI is computed using the following 
formula: 

𝑣ℎ = 𝑝𝑒𝑎𝑘𝑃𝑜𝑖𝑛𝑡𝑍 − 𝑚𝑒𝑎𝑛𝑍    (1) 

𝑚𝑒𝑎𝑛𝑍 =
1

𝑛
∑ 𝑅𝑂𝐼_𝑃𝑜𝑖𝑛𝑡𝑖 𝑍

𝑛
𝑖=1     (2) 

Its value should be inside an interval [𝑣ℎ
𝑚𝑖𝑛 , 𝑣ℎ

𝑚𝑎𝑥] in 
order for a ROI to be further processed.  

The steps for computing 𝑣ℎ can be seen in figure 3. A curb 
should mark a height transition between a lower region (the 
road side) and an upper region (the sidewalk or vegetation 
side). As an intuition, the normalized height variation feature 
(𝑣ℎ) tries to check the previous statement, by giving valuable 
information about the curb in the context of its surroundings. 
The ROIs which do not pass this filter will be discarded. 

The next computed spatial cues will check the vertical 
structure of the curb independent on its surroundings. 

Having the index of the maximum peak, we will start 
searching in opposite directions for the first local minimums 
found. The index of the found minimum will represent the best 
guess of the lowest and highest curb points. Let us denote the 
point near the road region with 𝑝𝑙𝑜𝑤 and the point near the 
adjacent road region (sidewalk or vegetation) with 𝑝ℎ𝑖𝑔ℎ. 

Figure 3 shows an illustration of finding the 𝑝𝑙𝑜𝑤 and 𝑝ℎ𝑖𝑔ℎ 

points.   

After finding 𝑝𝑙𝑜𝑤 and 𝑝ℎ𝑖𝑔ℎ for a ROI, we apply the next 

two filters: 

2. Height feature – Δℎ − a curb should have a height 
between 𝐻1 and 𝐻2, where 𝐻1 < 𝐻2. The value of 
Δℎ is the absolute difference of the real measured 
heights of 𝑝𝑙𝑜𝑤 and 𝑝ℎ𝑖𝑔ℎ. 

3. Width feature – the Euclidean distance between 

𝑝𝑙𝑜𝑤 and 𝑝ℎ𝑖𝑔ℎ is also a good indicator along with the 

height filter. The width and height give valuable 

indication about the sloppiness of the line segment 

between 𝑝𝑙𝑜𝑤 and 𝑝ℎ𝑖𝑔ℎ. This width should be inside 

a predefined interval [𝑊1, 𝑊2]. 

 
The ROIs which passed all the three feature tests will be kept 

as candidate curb regions while the others will be discarded.  

A list of 3D points containing the detected low edge point 
from each candidate curb ROI is passed to the next pipeline 
stage.  

D. Outliers removal 

Although the features computed earlier try to capture as 
much as possible the real curb points, some erroneous data 
might still be present, especially in the areas with vegetation. 
The erroneous points appear as sparse chunks of points which 
are distributed unevenly on the lateral and longitudinal axis, 

 

 
 

Figure 3. Illustration of Normalized height variation filter computation. 

The vertical axis represents the normalized height while the horizontal 

axis is the index of points inside a ROI. The upper figure A represents 
the profile of a Curb ROI. The lower figure B represents the first order 

derivative (FOD) of the curbs’ profile. 

 
 

Figure 4. Applying the outliers’ removal algorithm. In image A, the 

candidate curb points are seen from a bird’s eye view. The best lines 

found by the local linear based outlier removal algorithm are drawn. In 
image B, only the point’s which fall in the previously found lines are 

kept as the real curbstones points. 

 



  

while the true curb points are usually linearly grouped on 
several short length line segments (see figure 4). A global 
outlier removal method which relies on statistical methods is 
impossible to implement and give good results.  

From a bird’s eye perspective, curbstones found on any 

shape of road can be described using connected line segments. 

Even a circular shaped curb can be reconstructed using 

consecutive small polylines.  Because the most obvious feature 

of a curb is its shape, the proposed outlier removal relies on a 

local linear fitting model based approach. The spatial proximity 

plays an important role in the selection of the final curb points. 
 

The algorithm for this method is presented in the figures 

Algorithm 1 and 2.  

 
The outlier removal stage uses as input a merged cloud 𝑃 

composed of 3D points from the current candidate curb points 
and the past detected 3D curb points. This assures that a high 
density of points is present near the neighbourhood of the real 
curb points. Based on this observation we first build a density 
grid (Line 1 – Alg. 1).  

The algorithm next tries to extract chunks of cells in a 
Nearest Neighborhood (NN) fashion, using the Euclidean 
distance 𝐷 as search radius (Line 5 – Alg.1). If enough 
neighboring cells are identified inside the radius 𝐷, then the 
outlier removal method, 𝑅𝑒𝑚𝑂𝑢𝑡𝑠(), is next applied on the 
chunk of cells to identify the best line model (Alg.2). Else, it 
searches for the minimum 𝐾 number of its nearest neighbours 
and tries to identify the best line model for them (Alg.2). This 
mixed neighborhood approach makes sure that the best 
neighboring cells are chosen for applying the outlier removal 
algorithm. 

The line hypotheses are built starting from the first two cells 
with highest density and ending with the ones with the lowest 
density (Lines 2-6 – Alg.2). The indices of the cells which fall 
on each candidate fitting line are stored in idxF (Line 9 –  
Alg. 2). If the percentage of idxF cells number from CellL cells 
number is greater than a threshold then the best line is found 
(Line 10-12 – Alg. 2). In this case the 3D points found inside 
the idxF cells are stored in Pts (Line 14 – Alg.2). The final 
curbs’ low edge points 𝐶𝑃 are all the points found inside the 
inlier cells (Line 8 – Alg. 1).   

E. Temporal integration of curb points 

Curbs are static elements of the environment. They tend to 
persist from one frame to another.  

Lidar sensors give sparse 3D clouds. This sparsity tends to 
increase direct proportionally with the depth of a point. In order 
to exploit the first statements and to solve the LiDAR sensor’s 
disadvantage, we have found of real help the integration of 
detected curb points from consecutive frames. 

Temporal integration implies accumulating points in the 
current frame from a fixed sequence of past frames. The past 
curb coordinates are transformed in the current coordinates 
system.  

For this we used information from the IMU sensor of the car, 
such as the yaw rate, the linear velocity and the timestamp of a 
frame. The Constant Turn Rate and Velocity (CTRV) motion 
model was used. Let us consider the position 𝑥, 𝑦 of a low edge 
curb point from a past frame on X, Y axis. The transformed 
coordinates are computed using the formula:  

[
𝑥′
𝑦′

] = 𝑅𝑥𝑦 [
𝑥 − 𝑇𝑥

𝑦 − 𝑇𝑦
]        (3) 

where, 

𝑇𝑥 = 𝑡𝑑 cos
𝜃

2
           (4) 

𝑇𝑦 = 𝑡𝑑 sin
𝜃

2
         (5) 

𝑅𝑥𝑦 = [
cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

]       (6) 

𝜃 represents the steering angle of the car from one frame to 
another and is computed based on the yaw rate and Δ𝑡; 
 𝑡𝑑 represents the linear displacement of the car from one 
frame to another. It is computed based on the distance 𝑑 
traveled by the car from the past frame to the current one as 
follows: 

𝑡𝑑 = 2
𝑑

𝜃
sin

𝜃

2
         (7) 

Input: 𝑃 

Output: 𝐶𝑃  

Parameters: 𝑟, 𝐾, 𝐷, 𝑑𝑖𝑠𝑡𝑇𝐻, 𝑖𝑛𝑙𝑃𝑐𝑇𝐻 
 

 𝐷𝐺 =  𝑏𝑢𝑖𝑙𝑑𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑀𝑎𝑝(𝑃, 𝑟) 
 𝐶𝑃 =  {} 
 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑 𝑐𝑒𝑙𝑙 𝑐 𝑖𝑛 𝐷𝐺 

𝐶𝑒𝑙𝑙𝐿 =  {} 

𝐶𝑒𝑙𝑙𝐿 =  𝑁𝑁(𝑐, 𝐷, 𝐷𝐺) 
𝑖𝑓 𝑠𝑖𝑧𝑒(𝐶𝑒𝑙𝑙𝐿) < 𝐾 

𝐶𝑒𝑙𝑙𝐿 =  𝐾𝑁𝑁(𝑐, 𝐾) 

         𝐶𝑃. 𝑎𝑝𝑝𝑒𝑛𝑑(𝑅𝑒𝑚𝑂𝑢𝑡𝑠(𝐶𝑒𝑙𝑙𝐿, 𝑑𝑖𝑠𝑡𝑇𝐻, 𝑖𝑛𝑙𝑃𝑐𝑇𝐻)) 

 
Algorithm 1. Extracting local chunks of cells using a mixed NN 

approach for applying the outlier removal algorithm 

𝟏. 
𝟐. 
𝟑. 
𝟒. 
𝟓. 
𝟔. 
𝟕. 
8.
 
 

𝟖. 

Input: 𝐶𝑒𝑙𝑙𝐿 

Output: 𝑃𝑡𝑠  

Parameters: 𝑑𝑖𝑠𝑡𝑇𝐻, 𝑖𝑛𝑙𝑃𝑐𝑇𝐻 
 

𝑃𝑡𝑠 = {}  

𝑑𝑒𝑠𝑐𝑒𝑛𝑑𝑖𝑛𝑔𝑂𝑟𝑑𝑒𝑟𝑆𝑜𝑟𝑡𝑈𝑠𝑖𝑛𝑔(𝐶𝑒𝑙𝑙𝐿, "𝑑𝑒𝑛𝑠𝑖𝑡𝑦") 
𝑜𝑘 =  𝑓𝑎𝑙𝑠𝑒 
𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑐𝑒𝑙𝑙 𝑐1 𝑖𝑛 𝐶𝑒𝑙𝑙𝐿  

𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑐𝑒𝑙𝑙 𝑐2 𝑖𝑛 𝐶𝑒𝑙𝑙𝐿, 𝑐1 ≠ 𝑐2, 𝑜𝑘 = 𝑓𝑎𝑙𝑠𝑒 
[𝑎, 𝑏, 𝑐]  =  𝑙𝑖𝑛𝑒𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠(𝑐1, 𝑐2) 
𝑑𝑖𝑠𝑡𝑠𝐿 =  𝑖𝑑𝑥𝐿 =  𝑑𝑖𝑠𝑡𝐹 =  𝑖𝑑𝑥𝐹 = {} 
[𝑑𝑖𝑠𝑡𝑠𝐿, 𝑖𝑑𝑥𝐿]  =  𝑑𝑖𝑠𝑡𝑇𝑜𝐿𝑖𝑛𝑒(𝐶𝑒𝑙𝑙𝐿, 𝑎, 𝑏, 𝑐) 
[𝑑𝑖𝑠𝑡𝑠𝐹, 𝑖𝑑𝑥𝐹] = (𝑑𝑖𝑠𝑡𝑠𝐿 < 𝑑𝑖𝑠𝑡𝑇𝐻) 
𝑖𝑓 𝑠𝑖𝑧𝑒(𝑖𝑑𝑥𝐹) ∗ 100/ 𝑠𝑖𝑧𝑒(𝐶𝑒𝑙𝑙𝐿) 

>  𝑖𝑛𝑙𝑃𝑐𝑇𝐻 

𝑜𝑘 =  𝑡𝑟𝑢𝑒 
𝑖𝑓 𝑜𝑘 =  𝑡𝑟𝑢𝑒 

𝑃𝑡𝑠 = 𝑔𝑒𝑡𝑃𝑡𝑠𝐼𝑛𝐶𝑒𝑙𝑙𝑠𝐼𝑑𝑥(𝐶𝑒𝑙𝑙𝐿, 𝑖𝑑𝑥𝐹) 
 

Algorithm 2. The outlier removal algorithm RemOuts() 

𝟏. 
𝟐. 
𝟑. 
𝟒. 
𝟓. 
𝟔. 
𝟕. 
𝟖. 
𝟗. 
𝟏𝟎. 
𝟏𝟏. 
𝟏𝟐. 
𝟏𝟑. 
𝟏𝟒. 



  

Although the final points are densified, temporal integration 
is sensitive to road bumps. A point’s displacement on the pitch 
angle clearly appears in such cases. A temporal solution for this 
problem is to find the deviation between the pitch from the 
aligned old frame points and the one from the new frames 
points and to correct the displacement by realigning the old 
points in order to correspond to current points pitch angle. 
However, small error in pitch measurement might be present 
and, at a large number of temporal integrated frames, they 
might accumulate in time and might be visible. Research still 
needs to be done in this direction. 

The set of final curb points 𝐶 is obtained after temporally 
fusing the curb points from 𝑚 previous frames with the set of 
current frames’ curb points 𝐶𝑃. Based on several experiments, 
we set the best value for 𝑚 to 5. 

 

IV. EVALUATION METHOD 

In order to evaluate the quality of the detected curb points 
we have considered two metrics: average distance of the 
detected curb points to the ground truth curb points (𝐴𝑉𝐺𝐷) 
and the positive predictive value – precision – of the detected 
curb points (𝑃𝑃𝑉). 

In the absence of an agreed benchmark for curb detection 
evaluation, we used a high-resolution ground truth map 
privately used in the frame of the UP-Drive research project. 
The map curb points are sampled with a gap of 10cm between 
them. Each point 𝑀𝑖 from the entire set of map points 𝑀 is 
defined by a latitude and a longitude in the Earth’s geographic 
coordinate system. After obtaining the set of curb points 𝐶 of 
size 𝑝 based on the proposed method, we try to match them 
against the map’s points. In order to do this, we first need to 
convert the curb point’s coordinates from the vehicles’ 
coordinate system to the Universal Transverse Mercator 
(UTM) coordinate system. This implies aligning the two 
coordinate systems. Once curb points UTM coordinates are 
available, a conversion to the geographic coordinate system 
which use latitude and longitude is done. 

Due to the fact that the distances between the detected points 
and the ground truth points are very small we can assume that 
the Earth has a constant radius 𝑅 in that vicinity and compute 
the distances between them. Thus, we use the following 

formulas for computing the 𝐴𝑉𝐺𝐷 score, where 𝐿𝑎𝑡(𝐶𝑗) is the 

latitude and 𝐿𝑜𝑛(𝐶𝑗) is the longitude of a curb point 𝐶𝑗: 

𝐴𝑉𝐺𝐷 =
1

𝑝
∑  min

𝑖=1,𝑛
(𝑑𝑖𝑠𝑡(𝐶𝑗 , 𝑀𝑖))

𝑝
𝑗=1       (8) 

𝑑𝑖𝑠𝑡(𝐶𝑗, 𝑀𝑖) = √𝑑𝑖𝑠𝑡𝑁𝑆(𝐶𝑗 , 𝑀𝑖)
2

+ 𝑑𝑖𝑠𝑡𝐸𝑊(𝐶𝑗 , 𝑀𝑖)
2
 (9) 

𝑑𝑖𝑠𝑡𝑁𝑆(𝐶𝑗 , 𝑀𝑖) = 𝑅 ∙ 𝑑𝑖𝑠𝑡𝐿𝑎𝑡(𝐶𝑗 , 𝑀𝑖)   (10) 

𝑑𝑖𝑠𝑡𝐸𝑊(𝐶𝑗 , 𝑀𝑖) = 𝑅 ∙ cos (𝐿𝑎𝑡(𝐶𝑗)) ∙ 𝑑𝑖𝑠𝑡𝐿𝑜𝑛(𝐶𝑗 , 𝑀𝑖) 

(11) 

𝑅 = 6378137 𝑚      (12) 

𝑑𝑖𝑠𝑡𝐿𝑎𝑡(𝐶𝑗 , 𝑀𝑖) =
|𝐿𝑎𝑡(𝐶𝑗)−𝐿𝑎𝑡(𝑀𝑖)|

180
∙ 𝜋    (13) 

𝑑𝑖𝑠𝑡𝐿𝑜𝑛(𝐶𝑗, 𝑀𝑖) =
|𝐿𝑜𝑛(𝐶𝑗)−𝐿𝑜𝑛(𝑀𝑖)|

180
∙ 𝜋    (14) 

  A point from 𝐶 is considered to be a true-positive (TP) 
detection if it is closer than 𝑇 cm from a point from the ground 
truth map, where 𝑇 =  30𝑐𝑚. This value was chosen with 
respect to the existing DGPS and IMU sensor errors that lead 
to an imperfect mapping of the detected curb points. The PPV 
is computed by using the following formulas: 
 

 

𝑃𝑃𝑉 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
=

∑ 𝑇𝑃(𝐶𝑗)
𝑝
𝑗=1

𝑝
      (15) 

𝑇𝑃(𝐶𝑗) = {
1 (𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒), 𝑖𝑓 min

𝑖=1,𝑛
(𝑑𝑖𝑠𝑡(𝐶𝑗 , 𝑀𝑖)) ≤ 𝑇

0 (𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒),                            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

  (16) 
 

V. EXPERIMENTAL RESULTS 

The evaluation was performed on a recorded sequence 

obtained by driving approximately 3.5 km. Each frame of the 

sequence contains the odometry data of the car from the IMU 

and DGPS sensor, along with the complete 360 degrees’ 

environment scans of each of the five LiDAR sensors and four 

RGB images coming from the monocular cameras. 

 

 

 
 

Figure 5. Plotted curb points onto the satellite images overlapping the map points. The curb points are marked with red, while the map points are 

marked with blue. Major displacement errors appear from the DGPS sensor errors accumulated with the yaw angle errors from the car’s IMU sensor. 



  

1. Hardware infrastructure 
 

 

A robust detection of small objects like curbstones requires 
many LiDAR scanning lines. In order to increase the number 
of scanning lines and realize entire coverage of the surrounding 
environment, five LiDARs with 360 degree FOVs are mounted 
on top of the vehicle. Three of them perform scans along 32 
lines (front-left, front-right, rear-left) covering 40 degrees in 
vertical direction and the other two perform scans along 16 
lines (rear-center, rear-right), covering 30 degrees in vertical 
direction. With the given LiDARs setup, a coverage of at least 
one scanning line per degree is realized for each side of the 
vehicle.  

Four cameras are placed to offer a 360 degrees’ view of the 
scene. Fisheye lenses have a large field of view of 191 degrees’ 
horizontal and 150 degrees vertical with possible overlapping 
regions between different cameras. The images are 
successfully used for the semantic segmentation process of all 
pixels. 

An advanced inertial and navigation sensor DGPS/IMU is 
also mounted on the vehicle for measuring its motion, position 
and orientation. The position and heading angle are used for 
mapping the detected curbs in the Earth geographic coordinate 
system. The sensor measurement errors are at most 0.2m in 
position and 0.1 degrees in heading angle.   

 

2. Parameters tuning 
 

After continuous trial and error, we have set the following 
threshold parameters for the proposed algorithm.  

The limits for the first two spatial filters parameters are: 

 𝒗𝒉
𝒎𝒊𝒏 = 0.013,   𝒗𝒉

𝒎𝒂𝒙 = 0.13, 𝐻1 = 0.03𝑚, 𝐻2 = 0.3𝑚. 

 Because each of the five LiDAR sensors had a different tilt 
angle relative to the ground plane we had to tune the distance 
feature thresholds for each sensor independently. For the Front-
Left LiDAR we used 𝑊1 = 0𝑚 and 𝑊2 = 1.7𝑚;  Front-

Right: 𝑊1 = 0𝑚 and 𝑊2 =  2𝑚; Rear-Right: 𝑊1 = 0𝑚 and 
𝑊2 =  1.7𝑚; Rear-Left: 𝑊1 = 0.2𝑚 and 𝑊2 =  1𝑚; Rear-
Center: 𝑊1 = 0.1𝑚 and 𝑊2 =  1.5𝑚. 

The parameters used for the outlier removal algorithm are: 
𝑟 =  0.8𝑚, 𝐾 =  10, 𝑑𝑖𝑠𝑡𝑇𝐻 =  0.05𝑚, 𝑖𝑛𝑙𝑖𝑒𝑟𝑃𝑐𝑇𝐻 =
30%, D = 5m. 

 

 

3. Experimental evaluation 
 

After optimizations, the supplementary time introduced by 
the proposed curb detection algorithm (stages B., C., D. and E. 
of the pipeline) is of 5.5ms on a PC with an Intel i7-3770K 
CPU and a frequency of 3.50GHz. The algorithm was 
implemented on one CPU core. 

A quantitative evaluation of the detected curbs according to 
the methodology presented in chapter IV was performed. 
Specific scenarios like straight roads, curved roads, 
intersections and roundabouts are selected out of the whole 
drive sequence for individual testing. The performance results 
achieved in these scenarios are presented in Table I. These 
obtained results are however affected by the ego vehicle’s 
position and orientation errors from the DGPS/IMU sensors. 

In figure 5, we present some plotted curb points onto 
satellite images coresponding to several scenarios. The 
displacement errors seen in the last two images are due to the 
measurement errors from the DGPS/IMU sensors. The 
robustness of the detected curb points can be seen in figure 6, 
where such displacements are no longer present. 

 
 

TABLE I. CURB DETECTION AND MAPPING RESULTS 

Scenarios AVGD PPV 

Straight road 0.20 m 79.4 % 

Curved road 0.24 m 63.0 % 

Complex intersection 0.32 m 84.2 % 

T - intersection 0.24 m 81.0 % 

Roundabout 0.34 m 80.6 % 

 

 
Figure 6. Results from the evaluation stage for different road shapes. The camera images are from the front monocular camera sensor.  

The car is moving forward (upward). 



  

VI. CONCLUSION 

In this paper we proposed a curb detection method which 
makes use of the fusion between the semantically labeled 
camera images and the 3D LiDAR point clouds. A novel 
outlier removal algorithm which uses local linear models for 
finding the final curb points was proposed. The curb points 
sparsity issue was addressed by temporally integrating the 
detected curb points from consecutive frames.  

The evaluation is performed using drive recorded 
sequences. The detected curb points are matched against a 
high resolution digital map containing curb points. Although 
the results are affected by the sensor’s calibration and 
synchronization errors and DGPS/IMU errors, the average 
error distance is between 0.2m and 0.34m and the precision is 
between 63% and 84.2%. 

Future improvements will be focused on the identification 
of the error sources and diminish their influence in order to 
increase the precision of the proposed system. 
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